Площади треугольников
Для того чтобы помочь своему ребенку с уроками, родители должны сами знать множество вещей. Как найти площадь равнобедренного треугольника, чем причастный оборот отличается от деепричастного, что такое ускорение свободного падения?
С любым из этих вопросов у ваших сына или дочери могут возникнуть проблемы, и они именно к вам обратятся за разъяснениями. Чтобы не упасть лицом в грязь и поддержать свой авторитет в детских глазах, стоит освежить в памяти некоторые элементы школьной программы.
Возьмем для примера вопрос о равнобедренном треугольнике. Геометрия в школе многим тяжело дается, а после школы быстрее всех забывается.
Но когда ваши дети пойдут в 8 класс, придется вспомнить формулы, касающиеся геометрических фигур. Равнобедренный треугольник — одна из самых простых фигур в плане нахождения ее параметров.
Начнем с объяснения терминов
Если все, что вы когда-то учили о треугольниках, забыто, давайте вспоминать. Равнобедренным называется такой треугольник, у которого 2 стороны имеют одинаковую длину. Эти равные между собой ребра называются боковыми сторонами равнобедренного треугольника. Третья же сторона — его основание.
Существует такой вариант, при котором равны между собой все 3 стороны. Он носит название равностороннего треугольника. На него распространяются все формулы, применяемые к равнобедренному, и в случае необходимости любую из его сторон можно назвать основанием.
Для нахождения площади нам понадобится разделить основание пополам. Прямая, опущенная к полученной точке из вершины, соединяющей боковые стороны, пересечет основание под прямым углом.
Таково уж свойство подобных треугольников: медиана, то есть прямая от вершины к середине противоположной стороны, в равнобедренном треугольнике является его биссектрисой (прямой, делящей угол пополам) и его высотой (перпендикуляром к противоположной стороне).
Чтобы найти площадь равнобедренного треугольника, надо умножить его высоту на основание, а затем поделить это произведение пополам.
Для нахождения площади треугольника формула проста: S=ah/2, где а — длина основания, h — высота.
Наглядно это можно объяснить следующим образом. Вырежьте из бумаги аналогичную фигуру, найдите середину основания, проведите к этой точке высоту и аккуратно разрежьте по этой высоте. Получатся два прямоугольных треугольника.
Если приставить их друг к другу гипотенузами (длинными сторонами), то составится прямоугольник, одна сторона которого будет равна высоте нашей фигуры, а другая — половине ее основания. То есть подтвердится формула.
Лучшим учеником в классе становится не зазубривающий, а думающий и, главное, понимающий школьник.
Как найти площадь фигуры, если один угол прямой?
Может так оказаться, что угол между боковыми сторонами заданной треугольной фигуры составляет 90°. Тогда этот треугольник будет называться прямоугольным, его боковые стороны — катетами, а основание — гипотенузой.
Площадь такой фигуры можно вычислить вышеизложенным способом (находим середину гипотенузы, проводим к ней высоту, умножаем ее на гипотенузу, делим пополам). Но можно решить проблему гораздо проще.
Начнем с наглядности. Прямоугольный равнобедренный треугольник представляет собой ровно половину квадрата, если разрезать тот по диагонали. И если площадь квадрата находится простым возведением во вторую степень его стороны, то площадь нужной нам фигуры будет вдвое меньше.
S=a2/2, где а — длина катета.
Площадь равнобедренного прямоугольного треугольника равна половине квадрата его боковой стороны. Проблема оказалась не такой уж серьезной, какой была на первый взгляд.
Геометрия — точная наука. Если вникнуть в ее основы, то трудностей с ней будет немного, а логичность доказательств может очень увлечь вашего ребенка. Нужно просто немного ему помочь. Какой бы хороший учитель ему ни достался, родительская помощь лишней не будет.
А в случае с изучением геометрии очень полезным станет метод, о котором говорилось выше, — наглядности и простоты объяснения.
Нужно постараться как можно дальше отойти от академической сухости учебника и заменить ее на живое и практичное объяснение.
При этом нельзя забывать о точности формулировок, иначе можно сделать эту науку гораздо сложней, чем она есть на самом деле.